

ENGINEERING INNOVATION FDH Infrastructure Services -- 6521 Meridien Drive, Raleigh, NC 27616 Ph. 919.755.1012 -- Fax 919.755.1031

INFRASTRUCTURE SERVICES

Fiber-Reinforced Composite Lighting Pole Calculations

Project Info & Details							
Customer Name:	Solar Lighting International, Inc.						
Job Name:	: St Croix Project						
Address:	5:						
City:		State	FL				
Pole Catalog Number:	DXX28_XXDN2-ARM						
Latitude, Longitude:							
Building Code:	2015	IBC					

Site Parameters		
Exposure Category:	С	-
Ultimate Wind Speed:	170	mph
Nominal Wind Speed:	131.7	mph

Pole Geometry		
Pole Length:	28	ft
Height Above Grade:	20	ft
Embedment Depth:	8.0	ft
Test Height:	19	ft
Top Diameter:	6	in
Pole Taper:	0.14	in/ft
Bottom Diameter:	9.92	in
Diameter @ Embedment:	8.80	in
Diameter @ Centriod:	7.49	in
Diameter @ Test Height:	6.14	in

Design Parameters						
Pole Class:	II	-				
Design Life :	25 yr	-				
Area Type:	Proj. Area					
Proposed (Luminaire + Arm) Proj. Area:	15	ft ²				
Proposed Luminaire Shape:						
Additional Proj. Area (Shroud, Antennas):	6	ft ²				
Additional Proj. Area Shape:		-				
Additional Proj. Area Diameter:		in				
Center Height of Additional Proj. Area:	10	ft				
Weight of Luminaire:	400	lbs				
*Luminaire Arm Length:	0	ft				
*Luminaire Arm Diameter:	0	in				
Consider Embedment Design?:	Yes	-				
*If luminaire flush-mounted, enter zero for arm length						

Embedment Design							
S ₁ , Soil Class:	3	-					
Embedment (Design):	8.00	ft					
Embedment (Required):	6.49	ft					
Embedment Check:	ОК	-					

Referenced Codes

- 2017 Florida Building Code, 6th Edition
 ASCE 7-10: Minimum Design Loads for
- Buildings and Other Structures
- 2013 AASHTO LTS, 6th Edition
- 2012 ANSI C136.20
- ASTM D4923-01

Result Summary							
Max Pole Proj. Are	sting Values):	1	7	ft ²			
Max Test Loa	d (Tes	sting Values):	17	51	lbs		
Ma	ix Cal	culated Load:	103	6.6	lbs		
	ent Capacity:	59.	2%	-			
Code Specified Deflection Limit:							
Deflection Limit of Str	uctu	re Height (Per	10	10/			
	A	STM D4923):	10	//0	-		
Deflection <	24	inches @ 518			lbs		
Client Specified Deflection Limit:							
Does the Client have Deflection Requirements? No							

COA 28282

This engineering analysis is based on the tested capacity of fiber-reinforced composite poles, and is not an assessment of the condition of the analyzed pole. It is the responsibility of Alliance Composites, Inc. to verify that the structure analyzed is the correct structure. If there are parameters included in this analysis that are not accurate, FDH Infrastructure Services should be notified immediately so that a revised analysis may be performed. All services provided exercise a level of diligence equivalent to the expected standards our profession. No other warranty or guarantee, expressed or implied, is offered. Unless signed and sealed by a professional engineer, this analysis tool is intended to be for internal estimation purposes only. The use of engineering work is limited to the expressed purpose for which it was commissioned and may not be reused, copied, or distributed for any purposed without the written consent of FDH Infrastructure Services.

(a) Wind Force on Pole				Code Reference
$F_1 = 0.00256 * K_Z * G =$ where A = V =	* V^2 * I_r * C_d * I_r projected area o wind velocity (m	4 f pole (ft ²) ph)		AASHTO 3.8.1 (pg. 3-05)
Height & Exposure Factor $\rightarrow K_z = K_z = K_z$	0.87 2.01 * $(\frac{Z}{-})^{\frac{2}{\alpha}}$	= 0.90	for (h \leq 16.4 ft) for (h > 16.4 ft)	AASHTO 3.8.4 (pg. 3-12)
-	z_g' where $z_g = \alpha = \alpha$	906 ft Based on Exposure 9.50 Category		ASCE 7-10: C27.3.1 (pg. 547)
Gust Effect Factor \rightarrow G =	1.14	20 ft ← Height Above Grade		AASHTO 3.8.5 (pg. 3-13)
Wind Importance Factor \rightarrow I _r =	0.87		for (25 yr life) - nonhurricane region	AASHTO 3.8.3 (pg. 3-06)
l _r =	0.77		for (25 yr life) - hurricane region	
Wind Drag Coefficient $\rightarrow \mathbf{C_d} =$	1.10		If $C_v Vd \le 39$ mph-ft	AASHTO 3.8.6 (pg. 3-15)
C _d =	$\frac{129}{(6 \text{ M})^{13}}$	(Cylindrical Members)	If 39 mph-ft < $C_v Vd$ < 78 mph-ft	
C _d =	$(c_v v a)^{1.5}$ 0.45		If $C_v Vd \ge 78$ mph-ft	
Velocity Conversion Factor $\rightarrow \mathbf{C}_{\mathbf{v}}$ =	0.93		for (25 yr life) - nonhurricane region	AASHTO C3.8.6 (pg. 3-15)
C _v =	0.88		for (25 yr life) - hurricane region	
Centroid of Trapezoid \rightarrow h ' =	$\frac{h}{(\frac{3}{3})}\left(\frac{2d_2+d_1}{d_2+d_1}\right)$ where d ₂ = top diame d ₁ = bottom di h = height ab	= 9.37 ft eter iameter ove grade		
(b) Wind Force on Luminaire				
$F_2 = 0.00256 * K_Z * G$	$*V^2 * I_r * C_d * I_r$	E		AASHTO 3.8.1 (pg. 3-05)
where E =	projected area o	f luminaire (ft²)		
Wind Drag Coefficient $\rightarrow \mathbf{C_d} =$	0.5	(Luminaires w/ generally rounded surfaces)		AASHTO 3.8.6 (pg. 3-15)
Wind Drag Coefficient $\rightarrow \mathbf{C_d}$ =	1.2	(Luminaires with rectangular flat side shapes)		AASHTO 3.8.6 (pg. 3-15)
(c) Wind Force on Arm				
$F_3 = 0.00256 * K_Z * G$	$*V^2 * I_r * C_d * I_r$	R		AASHTO 3.8.1 (pg. 3-05)
where R =	projected area o	f arm (ft ²)		
Wind Drag Coefficient $\rightarrow \mathbf{C_d} =$	1.10		If $C_v Vd \le 39$ mph-ft	AASHTO 3.8.6 (pg. 3-15)
C _d =	$\frac{129}{(C_V V d)^{1.3}}$	(Cylindrical Members)	If 39 mph-ft < $C_v Vd$ < 78 mph-ft	
C _d =	0.45		If $C_v Vd \ge 78$ mph-ft	
(d) Wind Force on Additional EPA				
$F_4 = 0.00256 * K_7 * G^{-1}$	$*V^2 * I_r * C_d * U_s$	J		AACHTO 2.8.1 (ma. 2.0E)
where U =	projected area o	f additional EPA (ft ²)		AASITTO 5.6.1 (pg. 5-05)
Wind Drag Coefficient $\rightarrow \mathbf{C_d} =$	1.10		If $C_v Vd \le 39$ mph-ft	AASHTO 3.8.6 (pg. 3-15)
C _d =	$\frac{129}{(C V d)^{13}}$	(Cylindrical Members)	If 39 mph-ft < $C_v Vd$ < 78 mph-ft	
C _d =	$(L_v V u)^{1.0}$ 0.45		If $C_v Vd \ge 78$ mph-ft	
Wind Drag Coefficient \rightarrow \mathbf{C}_{d} =	1.7	(Flat Members)	AND DANIE	AASHTO 3.8.6 (pg. 3-15)

62750

Vo

(e) Deflection Test Force

 $F_d = \frac{M_B}{(L - L_1)}$

e length above ground line or base

ft = length from pole top to test force application point 1 ft-lbs = max total resultant moment at pole base

AASHTO 8.7.1 (pg. 8-05)

(f) Strength Test Force

		Bending Moment in Pole = (Pressure x Area) x Distance = Force x Distance								
Force Description	Kz	G	V (mph)	l _r	C _v Vd (mph-ft)	C _d	EPA (ft ²)	F _x (lbs)	D _X (ft)	M _{Bx} (ft-lbs)
Wind Force on Pole (F ₁)	0.90	1.14	131.7	0.77	72.3	0.49	6.09	213.8	9.4	2003.16
Wind Force on Luminaire (F ₂)	0.90	1.14	131.7	0.77	-	0.50	7.50	263.2	21.0*	5528.24
Wind Force on Arm (F ₃)	-	-	-	-	#VALUE!	#VALUE!	-	-	-	-
Wind Force on Additional Projected Area (F ₄)	0.90	1.14	131.7	0.77	0.0	1.10	6.60	231.7	10.0	2316.60
Additional Moment due to Weight of Luminaire (M ₁)	-	-	-	-	-	-	-	400.0	0.0	0.00
*Luminaire and Arm assumed height = 1 ft above top of pole Total Resultant Moment at Pole Base** 9848.00				9848.00						

**Max M_{Bx} is calculated using the maximum of F₂ & F₃ since combined Projected Area is provided

$$F_d = \frac{M_B}{(L - L_1)} = 518.32$$
 lbs

→ A safety factor of 2.0 againist failure in bending is specified for the test. (AASHTO C8.7.1)

L =

L₁ =

M_B =

9848

 \rightarrow

$$F_s = 2 * F_d =$$
 1036.63 lbs

(g) Embedment Checks

$$d = 0.5A \{1 + [1 + (4.36h / A)^{1/2}\}\$$

where **d** = depth of embedment in earth =

6.49 $2.34P/(S_1b) =$ A = 1.55 ft

- **b** = diameter of the embedded post = 0.73 ft
- **h** = distance from ground surface to point of application of "P" = 19.0 ft
- **P** = applied lateral force = 518.32 lbs
- S₁ = allowable lateral soil-bearing pressure (use Table 1806.2 for a reference) = 1067 psf \rightarrow Based on one-third the depth of embedment

ft

TABLE 1806.2

	VERTICAL FOUNDATION	LATERAL BEARING PRESSURE	LATERAL SLIDING RESISTANCE						
CLASS OF MATERIALS	PRESSURE (psf)	(psf/ft below natural grade)	Coefficient of friction ^a	Cohesion (psf) ^b					
1. Crystalline bedrock	12,000	1,200	0.70						
2. Sedimentary and foliated rock	4,000	400	0.35						
3. Sandy gravel and/or gravel (GW and GP)	3,000	200	0.35						
 Sand, silty sand, clayvey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM, GC) 	2,000	150	0.25						
5. Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)	1,500	100		130					

For SI: 1 pound per square foot = 0.0479kPa, 1 pound per square foot per foot = 0.157 kPa/m.

a. Coefficient to be multiplied by the dead load.

b. Cohesion value to be multiplied by the contact area, as limited by Section 1806.3.2.

Version: 3.2

Code Reference

2015 IBC: Equation 18-1 (pg. 427)